Sistem bilangan adalah kode atau simbol yang digunakan untuk menerangkan sejumlah hal secara detail. Sistem bilangan adalah bahasa yang berisi satu set pesan simbul-simbul yang berupa angka dengan batasan untuk operasi aritmatika penjumlahan, perkalian dan yang lainnya. Pada sistem bilangan terdapat bilangan integer dan bilangan pecahan dengan titik radix “.”.
(N) r = [ (bagian integer . bagian pecahan) r)
2.1. Sistem Bilangan Biner
Sistem bilangan biner adalah suatu sistem atau cara menghitung bilangan dengan hanya menggunakan dua simbol angka yaitu ‘0’ dan ‘1’, bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 2 .Sistem bilangan biner digunakan untuk mempresentasikan alat yang mempunyai dua keadaan operasi yang dapat dioperasikan dalam dua keadaan ekstrim. Contoh switch dalam keadaan terbuka atau tertutup, lampu pijar dalam keadaan terang atau gelap, dioda dalam keadaan menghantar atau tidak menghantar, transistor dalam keadaan cut off atau saturasi, fotosel dalam keadaan terang atau gelap, thermostat dalam keadaan terbuka atau tertutup, Pita magnetik dalam keadaan magnet atau demagnet.
2.2. Sistem Bilangan Desimal.
Sistem bilangan desimal adalah suatu sistem atau cara menghitung bilangan dengan menggunakan sepuluh simbol angka yaitu ‘0’ ,‘1’, ‘2’,’3’,’4’,’5’,’6’,’7’,’8’ dan ‘9’ bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 10. Sistem bilangan desimal kurang cocok digunakan untuk sistem digital karena sangat sulit merancang pesawat elektronik yang dapat bekerja dengan 10 level (tiap-tiap level menyatakan karakter desimal mulai 0 sampai 9)
Sistem bilangan desimal adalah positional-value system,dimana nilai dari suatu digit tergantung dari posisinya. Nilai yang terdapat pada kolom ketiga pada Tabel 2.1., yaitu A, disebut satuan, kolom kedua yaitu B disebut puluhan, C disebut ratusan, dan seterusnya. Kolom A, B, C menunjukkan kenaikan pada eksponen dengan basis 10 yaitu 100 = 1, 101 = 10, 102 = 100. Dengan cara yang sama, setiap kolom pada sistem bilangan biner yang berbasis 2, menunjukkan eksponen dengan basis 2, yaitu 20 = 1, 21 = 2, 22= 4, dan seterusnya.
Tabel 2.1. Nilai Bilangan Desimal dan Biner
Kolom desimal
Kolom biner
C
102 = 100
(ratusan)
B
101 = 10
(puluhan)
A
100 = 1
(satuan)
C
22 = 4
(empatan)
B
21 = 2
(duaan)
A
20 = 1
(satuan)
Setiap digit biner disebut bit; bit paling kanan disebut least significant bit (LSB), dan bit paling kiri disebut most significant bit (MSB).
Untuk membedakan bilangan pada sistem yang berbeda digunakan subskrip. Sebagai contoh 910menyatakan bilangan sembilan pada sistem bilangan desimal, dan 011012 menunjukkan 01101 pada sistembilangan biner. Subskrip tersebut sering diabaikan jika sistem bilangan yang dipakai sudah jelas.
Kolom desimal
|
Kolom biner
| ||||
C
102 = 100
(ratusan)
|
B
101 = 10
(puluhan)
|
A
100 = 1
(satuan)
|
C
22 = 4
(empatan)
|
B
21 = 2
(duaan)
|
A
20 = 1
(satuan)
|
2.3. Sistem Bilangan Oktal.
Sistem bilangan oktal adalah suatu sistem atau cara menghitung bilangan dengan menggunakan delapan simbol angka yaitu ‘0’ ,‘1’, ‘2’,’3’,’4’,’5’,’6’,dan ’7’ bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 8. Sistem bilangan oktal digunakan sebagai alternatif untuk menyederhanakan sistem pengkodean biner. Karena 8 = 23, maka satu (1) digit oktal dapat mewakili tiga (3) digit biner.
2.4. Sistem Bilangan Heksadesimal.
Sistem bilangan heksadesimal adalah suatu sistem atau cara menghitung bilangan dengan menggunakan 16 simbol yaitu ‘0’ ,‘1’, ‘2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,
’A’,’B’, ’C’,’D’,’E’, dan ‘F’ bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 16. Identik dengan sistem bilangan oktal, sistem bilangan heksadesimal juga digunakan untuk alternatif penyederhanaan sistem pengkodean biner. Karena 16 = 24, maka satu (1) digit heksadesimal dapat mewakili empat (4) digit biner.
2.5. Konversi Bilangan
2.5.1. Konversi bilangan desimal ke biner.
Cara untuk mengubah bilangan desimal ke biner adalah dengan membagi bilangan desimal yang akan diubah, secara berturut-turut dengan pembagi 2, dengan memperhatikan sisa pembagiannya. Sisa pembagian akan bernilai 0 atau 1, yang akan membentuk bilangan biner dengan sisa yang terakhir menunjukkan MSBnya. Sebagai contoh, untuk mengubah 5210 menjadi bilangan biner, diperlukan langkah-langkah berikut :
52/2 = 26 sisa 0, LSB
26/2 = 13 sisa 0
13/2 = 6 sisa 1
6/2 = 3 sisa 0
3/2 = 1 sisa 1
½ = 0 sisa 1, MSB
Sehingga bilangan desimal 5210 dapat diubah menjadi bilangan biner 1101002.
Cara di atas juga bisa digunakan untuk mengubah sistem bilangan yang lain, yaitu oktal atau heksadesimal.
Tabel 2.2. Daftar Bilangan Desimal dan Bilangan Biner Ekivalensinya
Desimal
Biner
C (MSB)
(4)
B
(2)
A (LSB)
(1)
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2.5.2. Konversi bilangan desimal ke oktal.
Teknik pembagian yang berurutan dapat digunakan untuk mengubah bilangan desimal menjadi bilangan oktal. Bilangan desimal yang akan diubah secara berturut-turut dibagi dengan 8 dan sisa pembagiannya harus selalu dicatat. Sebagai contoh, untuk mengubah bilangan 581910 ke oktal, langkah-langkahnya adalah :
5819/8 = 727, sisa 3, LSB
727/8 = 90, sisa 7
90/8 = 11, sisa 2
11/8 = 1, sisa 3
1/8 = 0, sisa 1, MSB
Sehingga 581910 = 132738
2.5.3. Konversi bilangan desimal ke heksadesimal.
Teknik pembagian yang berurutan dapat juga digunakan untuk mengubah bilangan desimal menjadi bilangan heksadesimal. Bilangan desimal yang akan diubah secara berturut-turut dibagi dengan 16 dan sisa pembagiannya harus selalu dicatat. Sebagai contoh, untuk mengubah bilangan 340810 menjadi bilangan heksadesimal, dilakukan dengan langkah-langkah sebagai berikut :
3409/16 = 213, sisa 110 = 116, LSB
213/16 = 13, sisa 510 = 516
13/16 = 0, sisa 1310 = D16, MSB
Sehingga, 340910 = D5116.
2.5.4. Konversi bilangan biner ke desimal.
Seperti yang terlihat pada tabel 2.1. sistem bilangan biner adalah suatu sistem posisional dimana tiap-tiap digit (bit) biner mempunyai bobot tertentu berdasarkan atas posisinya terhadap titik biner seperti yang ditunjukkan pada tabel 2.3.
Tabel 2.3. Daftar Bobot tiap bit Bilangan Biner dan Ekivalensinya dalam desimal
Desimal
|
Biner
| ||
C (MSB)
(4)
|
B
(2)
|
A (LSB)
(1)
| |
0
1
2
3
4
5
6
7
|
0
0
0
0
1
1
1
1
|
0
0
1
1
0
0
1
1
|
0
1
0
1
0
1
0
1
|
24
|
23
|
22
|
21
|
20
|
2-1
|
2-2
|
2-3
|
Bobot tiap-tiap bit biner
|
Titik biner
16
|
8
|
4
|
2
|
1
|
0.5
|
0.25
|
0.125
|
Ekivalensinya dalam desimal
|
Titik desimal
Oleh karena itu bilangan biner dapat dikonversikan ke bilangan desimal dengan cara menjumlahkan bobot dari masing-masing posisinya yang bernilai 1.
Sebagai contoh, untuk mengubah bilangan biner 1100112 menjadi bilangan desimal dapat dilakukan sebagai berikut:
1 1 0 0 1 1 Biner
25 + 24 + 21 + 20
32 + 16 + 2 + 1 = 51 Desimal
Sehingga bilangan biner 1100112 berubah menjadi bilangan desimal 5110.
Tabel 2.4. adalah contoh perubahan beberapa bilangan biner menjadi bilangan desimal.
Tabel 2.4. Contoh Pengubahan Bilangan Biner menjadi Desimal
Biner
Kolom biner
Desimal
32
16
8
4
2
1
1110
1011
11001
10111
110011
-
-
-
-
1
-
-
1
1
1
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
0
1
1
1
1
8 + 4 + 2 + 0 =14
8 + 0 + 2 + 1 =11
16+ 8 + 0 + 0 + 1 =25
16+ 0 + 4 + 2 + 1 =23
32+16+ 0 + 0 + 2 + 1 = 51
Cara lain untuk mengkonversikan bilangan biner menjadi bilangan desimal dapat dilakukan dengan cara menjumlahkan angka 2 dengan pangkat koefisien biner yang berharga 1. Sebagai contoh, untuk mengubah bilangan 101112 menjadi bilangan desimal, dilakukan dengan langkah-langkah sebagai berikut :
101112 = 1x 24 + 0x 23 + 1x 22 + 1x 21 + 1x 20 = 2310
Biner
|
Kolom biner
|
Desimal
| |||||
32
|
16
|
8
|
4
|
2
|
1
| ||
1110
1011
11001
10111
110011
|
-
-
-
-
1
|
-
-
1
1
1
|
1
1
1
0
0
|
1
0
0
1
0
|
1
1
0
1
1
|
0
1
1
1
1
|
8 + 4 + 2 + 0 =14
8 + 0 + 2 + 1 =11
16+ 8 + 0 + 0 + 1 =25
16+ 0 + 4 + 2 + 1 =23
32+16+ 0 + 0 + 2 + 1 = 51
|
2.5.5. Konversi bilangan biner ke oktal.
Konversi dari bilangan biner ke bilangan oktal dilakukan dengan mengelompokkan setiap tiga digit biner dimulai dari digit paling kanan(LSB). Kemudian, setiap kelompok diubah secara terpisah ke dalam bilangan oktal.
Sebagai contoh, bilangan 111100110012 dapat dikelompokkan menjadi: 11 110 011 001, sehingga:
112 = 38, MSB
1102 = 68
0112 = 38
0012 = 18, LSB
Jadi, bilangan biner 111100110012 apabila diubah menjadi bilangan oktal = 36318.
2.5.6. Konversi bilangan biner ke heksadesimal.
Bilangan biner dapat diubah menjadi bilangan heksadesimal dengan cara mengelompokkan setiap empat digit dari bilangan biner tersebut dimulai dari digit paling kanan (LSB). Kemudian, setiap kelompok diubah secara terpisah ke dalam bilangan heksadesimal.
Sebagai contoh, 01001111010111102 dapat dikelompokkan menjadi: 0100 1111 0101 1110. Sehingga:
01002 = 416, MSB
11112 = F16
01012 = 516
11102 = E16, LSB
Dengan demikian, bilangan 01001111010111102 = 4F5E16.
2.5.7. Konversi bilangan oktal ke desimal.
Sistem bilangan oktal adalah suatu sistem posisional dimana tiap-tiap digit oktal mempunyai bobot tertentu berdasarkan atas posisinya terhadap titik oktal seperti yang ditunjukkan pada tabel 2.5.
Tabel 2.5. Daftar Bobot tiap digit bilangan oktal dan ekivalensinya dalam desimal
84
|
83
|
82
|
81
|
80
|
8-1
|
8-2
|
Bobot tiap-tiap digit oktal
|
Titik oktal
4096
|
512
|
64
|
8
|
1
|
0.125
|
0.015625
|
Ekivalensinya dalam desimal
|
Titik desimal
Oleh karena itu bilangan oktal dapat dikonversikan ke bilangan desimal dengan cara menjumlahkan bobot kali nilai-nilai dari masing-masing posisinya.
Sebagai contoh, untuk mengubah bilangan oktal 3728 menjadi bilangan desimal dapat dilakukan sebagai berikut:
3 7 2 Oktal
3x82 + 7x81 + 2x80
192 + 56 + 2 = 250 Desimal
Sehingga bilangan oktal 3728 berubah menjadi bilangan desimal 25010.
2.5.8. Konversi bilangan oktal ke biner.
Konversi dari bilangan oktal ke bilangan biner dilakukan dengan cara mengubah setiap digit pada bilangan oktal secara terpisah menjadi ekivalen biner 3 digit, seperti yang terlihat pada Tabel 2.6.
Tabel 2.6. Ekivalen setiap digit bilangan oktal menjadi 3 bit bilangan biner
Digit oktal
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
Ekivalen biner 3 bit
|
000
|
001
|
010
|
011
|
100
|
101
|
110
|
111
|
Sebagai contoh, bilangan oktal 35278 dapat diubah menjadi bilangan biner dengan cara sebagai berikut:
38 = 0112, MSB
58 = 1012
28 = 0102
78 = 1112, LSB
Sehingga bilangan oktal 35278 sama dengan bilangan biner 011 101 010 1112.
2.5.9. Konversi bilangan oktal ke heksadesimal.
Konversi dari bilangan oktal ke bilangan heksadesimal dapat dilakukan dengan cara mengubah bilangan oktal ke bilangan biner atau ke bilangan desimal terlebih dahulu. Sebagai contoh, bilangan oktal3278 dapat diubah menjadi bilangan heksadesimal dengan cara diubah dulu ke bilangan desimal, sebagai berikut:
Oktal 3 2 7
Desimal 3x82 + 2x81 + 7x80 = 215
Selanjutnya hasil bilangan desimal diubah ke bilangan heksadesimal,
215/16 = 13, sisa 710 = 716, LSB
13/16 = 0, sisa 1310 = D16, MSB
Sehingga, 3278 = 215 10 = D716.
Cara lain diubah dulu ke bilangan biner, sebagai berikut:
Oktal 3 2 7
Biner 011 010 111
Selanjutnya hasil bilangan biner dikelompokkan setiap empat bit dimulai dari digit paling kanan(LSB). Kemudian, setiap kelompok diubah secara terpisah ke dalam bilangan heksadesimal.
Biner 0 1101 0111
Heksadesimal 0 D 7
Sehingga, 3278 = 110101112 = D716.
2.5.10. Konversi bilangan heksadesimal ke desimal.
Sistem bilangan heksadesimal adalah suatu sistem posisional dimana tiap-tiap digit heksadesimal mempunyai bobot tertentu berdasarkan atas posisinya terhadap titik heksadesimal seperti yang ditunjukkan pada tabel 2.7.
Tabel 2.7. Daftar Bobot tiap digit bilangan heksadesimal dan ekivalensinya dalam desimal
162
|
161
|
160
|
16-1
|
16-2
|
Bobot tiap-tiap digit heksadesimal
|
Titik heksadesimal
256
|
16
|
1
|
0.0625
|
0.00390625
|
Ekivalensinya dalam desimal
|
Titik desimal
Oleh karena itu bilangan heksadesimal dapat dikonversikan ke bilangan desimal dengan cara menjumlahkan bobot kali nilai-nilai dari masing-masing posisinya.
Sebagai contoh, bilangan heksadesimal 152B16 dapat diubah menjadi bilangan desimal dengan carasebagai berikut:
152B16 = (1 x 163) + (5 x 162) + (2 x 161) + (11 x 160)
= 1 x 4096 + 5 x 256 + 2 x 16 + 11 x 1
= 4096 + 1280 + 32 + 11
= 541910
Sehingga, 152B16 = 541910
2.5.11. Konversi bilangan heksadesimal ke biner.
Konversi dari bilangan heksadesimal ke bilangan biner dapat dilakukan dengan cara mengubah setiap digit pada bilangan heksadesimal secara terpisah menjadi ekivalen biner 4 bit, seperti yang terlihatpada Tabel 2.8.
Tabel 2.8. Ekivalen setiap digit dari bilangan heksadesimal menjadi 4 bit bilangan biner
Digit Heksadesimal
|
Ekivalen biner 4 bit
|
0
|
0000
|
1
|
0001
|
2
|
0010
|
3
|
0011
|
4
|
0100
|
5
|
0101
|
6
|
0110
|
7
|
0111
|
8
|
1000
|
9
|
1001
|
A
|
1010
|
B
|
1011
|
C
|
1100
|
D
|
1101
|
E
|
1110
|
F
|
1111
|
Sebagai contoh, bilangan heksadesimal 2A5C16 dapat diubah ke bilangan biner sebagai berikut.
216 = 0010, MSB
A16 = 1010
516 = 0101
C16 = 1100, LSB
Sehingga, bilangan heksadesimal 2A5C16 dapat diubah menjaid bilngan biner 0010 1010 0101 11002.
2.5.12. Konversi bilangan heksadesimal ke oktal.
Konversi dari bilangan heksadesimal ke bilangan oktal dapat dilakukan dengan cara mengubah bilangan heksadesimal ke bilangan biner atau ke bilangan desimal terlebih dahulu.
Sebagai contoh, bilangan heksadesimal 9F216 dapat diubah menjadi bilangan oktal dengan cara diubah dulu ke bilangan desimal, sebagai berikut:
Heksadesimal 9 F 2
Desimal 9x162 + 15x161 + 2x160 =
2304 + 240 + 2 = 254610
Selanjutnya hasil bilangan desimal diubah ke bilangan oktal,
2546/8 = 318, sisa 210 = 28, LSB
318/8 = 39, sisa 610 = 68,
39/8 = 4, sisa 710 = 78,
4/8 = 0, sisa 410 = 48, MSB
Sehingga, 9F216 = 2546 10 = 47628.
Cara lain diubah dulu ke bilangan biner, sebagai berikut:
Heksadesimal 9 F 2
Biner 1001 1111 0010
Selanjutnya hasil bilangan biner dikelompokkan setiap tiga bit dimulai dari digit paling kanan (LSB).Kemudian, setiap kelompok diubah secara terpisah ke dalam bilangan heksadesimal.
Biner 100 111 110 010
Heksadesimal 4 7 6 2
Sehingga, 9F216 = 1001111100102 = 47628.
2.6. Bilangan Biner Pecahan
Dalam sistem bilangan desimal, bilangan pecahan disajikan dengan menggunakan titik desimal. Digit-digit yang berada di sebelah kiri titik desimal mempunyai nilai eksponen yang semakin besar, dan digit-digit yang berada di sebelah kanan titik desimal mempunyai nilai eksponen yang semakin kecil.
Sehingga,
0.110 = 10-1 = 1/10
0.1010 = 10-2‑ = 1/100
0.2 = 2 x 0.1 = 2 x 10-1, dan seterusnya.
Cara yang sama juga bisa digunakan untuk menyajikan bilangan biner pecahan. Sehingga,
0.12 = 2-1 = ½, dan
0.012 = 2-2‑ = ½2 = ¼
Sebagai contoh,
0.1112 = 1/2 + 1/4 + 1/8
= 0.5 + 0.25 + 0.125
= 0.87510
101.1012 = 4 + 0 + 1+ ½ + 0 + 1/8
= 5 + 0.625
= 5.62510
Pengubahan bilangan pecahan dari desimal ke biner dapat dilakukan dengan cara mengalikan bagian pecahan dari bilangan desimal tersebut dengan 2, bagian bulat dari hasil perkalian merupakan pecahan dalam bit biner. Proses perkalian diteruskan pada sisa sebelumnya sampai hasil perkalian sama dengan 1 atau sampai ketelitian yang diinginkan. Bit biner pertama yang diperoleh merupakan MSB dari bilangan biner pecahan. Sebagai contoh, untuk mengubah 0.62510 menjadi bilangan biner dapat dilaksanakan dengan
0.625 x 2 = 1.25, bagian bulat = 1 (MSB), sisa = 0.25
0.25 x 2 = 0.5, bagian bulat = 0, sisa = 0.5
0.5 x 2 = 1.0, bagian bulat = 1 (LSB), tanpa sisa
Sehingga,
0.62510 = 0.1012